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CHAPTER 1

Introduction

Fig. 1.1 Terrestrial form of the Pacific (coastal) giant salamander, Dicamptodon tenebrosus, Redwood
National Park, and the original inspiration for this book’s cover. Photo credit: D. Hankin.

In this text we attempt to present a rigorous but understandable introduction to the field
of sampling theory. Sampling theory concerns itself with development of procedures
for random selection of a subset of units, a sample, from a larger finite population,
and with how to best use sample data to make scientifically and statistically sound
inferences about the population as a whole. The inferences fall into two broad categories:
(a) estimation of simple descriptive population parameters, such as means, totals, or
proportions, for variables of interest associated with the units of finite populations,
and (b) estimation of uncertainty associated with estimated parameter values. Although
the targets of estimation are few and simple, estimates of means, totals or proportions
see important and often controversial use in management of natural resources and in
fundamental ecological research. For example, estimates of total population size and
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1 INTRODUCTION

associated trends in abundance play key roles in development of harvest policy for
exploited species in fisheries and wildlife management settings, and in status reviews
and development of recovery strategies for species listed urider the Endangered Species
Act. Estimates of species abundance or species proportions and associated measures of
uncertainty also provide key input values for state variables, such as the true abundances or
proportions, in state-space models of population dynamics that explicitly separate but also
link a state process (say, trend in actual abundance of a species) and an observation process
(process for estimating the value of a state variable) (Newman et al. 2014). Estimates of
mean weights of individuals (e.g., of juvenile salmon in a small stream, or of young polar
bears foraging off an ice shelf) may provide critically important data for energetic models
of growth that may help predict the impacts of climate change on growth and survival
of species. A temporal sequence of accurate estimates of mean water quality parameters
in a lake may prove key for understanding the seasonal impacts of agricultural runoff
and may lead to changes in land use practices. There are thus a wealth of practical and
important applications of estimates of simple descriptive finite population parameters.
Given the potentially controversial use of such estimates, being able to provide measures
of the degree of uncertainty associated with these estimates is critical.

1.1 The design-based paradigm

We stress the classical design-based approach to sampling theory in this introductory text.
For the design-based approach, a chance randomization scheme is used to select a sample
of size n from a finite population consisting of N units. Each unit in the population is
recognized to have fixed variable (attribute) values associated with it (e.g., population units
may consist of individuals of a given species of tree and each tree, at a given point in time,
has fixed diameter at breast height, total height, volume, etc.). Typically, one variable is
of primary interest and we refer to this variable as the target variable, y. For unit i, we label
its unit-specific fixed value as y;, and we define the population parameters 7, = Zﬁil Vi
(total) and uy = Ty/N (mean). We may also take advantage of values of an auxiliary variable
associated with population units, denoted by x, that can be used to improve accuracy of
estimation of target variable population parameters, either through direct incorporation
in estimation formulas or indirectly through their influence on the randomization process
used to select samples.

In design-based sampling, the randomized procedure(s) used to select sample units
determines the sample space, the set of all possible samples of size n that can be selected
(with or without replacement) from the population of size N. The set of associated sample
probabilities that emerge from the randomized selection procedure, not necessarily equal,
along with the unit labels that appear in the samples, can be used to calculate first
and second order inclusion probabilities—the probabilities that unit i or that units i
and j, respectively, appear in a sample of size n selected according to the randomized
selection procedure. Associated with each possible sample s is a sample-specific estimate
of a population parameter, e.g., ’f},(s), calculated by substituting the sample y values (and
possibly also x values and/or first order inclusion probabilities) into equations (estimators)
used to calculate estimates of target population parameters.

Uncertainty of estimation is measured by the variation in sample estimates over the
sample space, variation induced by the interaction of the randomization scheme and
estimator with the set of variable values (y, and sometimes also x) associated with
population units. If the range of sample estimates is small and the average value of
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estimates is close to the target population parameter, then an estimator has good accuracy,
but if the range of sample estimates is large, or the average value of estimates is far from the
target population parameter, then an estimator has poor accuracy. Design-based sampling
theorists have developed methods to estimate the variability in sample estimates over
the full sample space—the sampling variance of an estimator—from just a single selected
sample, and they use such estimates to characterize the uncertainty associated with an
estimated descriptive population parameter.

We stress this design-based approach in the text for several reasons. First, in many
controversial resource management contexts, objectivity of estimation is an important
virtue of design-based sampling theory (Sarndal et al. 1992 p. 21). No model assumptions
are made regarding the distribution of the fixed y values over the population units and
a chance randomization scheme is used to select sample units. Design-based estimators
are therefore robust in the same sense that non-parametric statistical methods make no or
mild assumptions regarding the distributions of random variables (Brewer and Gregoire
2009) and cannot be faulted by competing researchers or conflicting agencies who might
allege deliberate bias resulting from model choice or purposive selection of sample
units. Second, from Overton and Stehman (1995): “in finite sampling the populations
being sampled and about which inferences are being made are real...and are subject to
enumeration and exact description. In contrast, the populations of conventional statistics
are hypothetical and represented by mathematical models”. Treating the y and x associated
with finite population units as fixed values has an undeniable conceptual validity in
a finite population. Third, the distribution of x and y over the finite population units
will often be poorly represented by any simple probability distribution. For example,
asserting that the volume of timber on 1 ha lots follows a normal distribution may be
a gross misrepresentation of reality. Fourth, we stress the design-based approach because
we believe that it would be difficult to do justice to both design-based estimation and the
model-based prediction (see below) approach in a relatively brief text designed for a first
course in sampling theory.

We recognize, of course, that the use of models for inference in finite populations
is an approach that is consistent with parametric statistics in general, that it has its
own logic and validity, and that it may provide an alternative and sound approach
for inference. In model-based prediction in finite populations, the actual variable values
associated with population units are assumed to be realizations of random variables, and
the finite population inference problem is to estimate the expected values (i.e., predict
the values) of random variables in those N —n units that did not appear in the sample,
conditioned on the realized values of the random variables that have been observed
in the sample of size n. Randomized selection methods used to select sample units are
typically not relevant to model-based inference. Predicted values are based on assumed
models that may include a dependence of the target variable on one or more auxiliary
variables. When the distribution of variable values across units and the relationship
between target and auxiliary variables are close to those assumed by models used for
prediction, then model-based prediction can generate estimates with errors that may be
smaller than those for design-based estimators. However, if the assumed models do not
accurately characterize the actual distribution of the target variable and/or the relationship
between the target and auxiliary variables, then errors may be large and expected values of
model-based predictors may be biased when compared to the fixed population parameters
that are the targets of estimation. In model-based prediction, emphasis is put on the
value of balanced samples, for which the mean values of auxiliary values in the sample
are purposively set to equal the mean values in the population (Valliant et al. 2000) to
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help ensure that model-based prediction is more robust to violations of assumed model
structure.

While our emphasis is on design-based inference, we do provide a brief introduction
to best linear unbiased (BLU) estimators and model-based prediction of finite population
parameters in Chapter 7. Our intention is to provide readers with an appreciation of the
fundamentally different perspectives that the design-based and model-based approaches
take to estimation of finite population parameters. Both approaches rest on the same basic
mathematical foundations of probability and statistics that we summarize in Appendix A.
For readers desiring to learn more about model-based prediction, we recommend Valliant
et al. (2000), Chambers and Clark (2012), and also Brewer’s (2002) text which considers
the benefits of combining design-based and model-based approaches.

1.2 Text content and orientation

Material is presented in this text at a level appropriate for and accessible to undergraduate
seniors, beginning graduate students (not enrolled in a statistics program), and natural
resources or environmental/ecological sciences professionals. Most material presented in
the text can be fully understood and appreciated with modest mathematics and statistics
training: considerable facility in algebra, including experience with multiple summation
notation; at least one semester of calculus, including some experience with partial
differentiation; an introductory course in statistical methods, along with an additional
unspecified statistics class (including an exposure to analysis of variance); and some
prior exposure to, though not necessarily programming proficiency in, R (R Core Team
2018), the statistical/programming/graphics language and environment used to generate
the numerical results and figures presented in this text. Depth of appreciation for the
subject matter generally would be greatly enhanced by formal background in probability
theory, but we do not assume that readers have such background. Our intention is to
foster interest in readers to develop or hone the necessary mathematical skills to follow
through derivations of important results, especially if these skills are not in their formal
backgrounds or are “rusty with lack of use”, so that users of this text will be able to develop
and successfully apply their own sampling strategies in their own unique application
settings.

We believe that the most natural and successful order for working through the text is
to directly follow the order of chapters as they appear in the text. Chapter 2 provides
a very gentle and largely non-quantitative introduction to important sampling theory
definitions and concepts (sampling frame, sampling design, sampling strategy) and
properties of estimators (expected value, bias, sampling variance, mean square error)
when sampling from finite populations, including justification of randomized selection
of units as compared to judgment or purposive selection of units. Important concepts
or terms appear in boldface type at first usage to emphasize their importance to readers.
Sophistication of presentation and complexity of mathematical notation and sampling
strategies gradually increases through the next several chapters. Chapter 3 provides an
introduction to equal probability selection methods, with and without replacement, and
Chapters 4-6 illustrate application of these equal probability selection methods in the
contexts of systematic, stratified, and equal size cluster sampling, respectively. Chapter 7
introduces the explicit use of auxiliary variable information in estimators (ratio and
regression estimation), while also providing a brief introduction to BLU estimators and
model-based prediction of finite population parameters. Chapter 8 introduces unequal
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probability selection methods, with and without replacement, and associated estimators
(notably the famous Hansen-Hurwitz and Horvitz-Thompson estimators). Selection of
units with unequal probabilities, with probabilities based on auxiliary variable values,
represents an alternative way to take advantage of auxiliary variable information. Material
covered through Chapter 8 is all devoted to sampling from what we call simple frames,
where the samples are selected directly from the individual units in the populations.
(Stratified sampling is a special case where a simple frame is used for independent
sample selection from within disjoint sets or strata of population units.) Sampling
strategies with complex frames are considered in the following two chapters. Chapter 9
is devoted primarily to two-stage implementation of multi-stage sampling strategies, but
we also provide the general framework for many designs with more than two stages of
sampling. Chapter 10 is devoted to two-phase implementation of multi-phase sampling.
The material presented in the chapters thus far mentioned comprises the “basic stuff” of
classical design-based sampling theory and is covered, in various ways, in most sampling
theory texts available today.

1.3 What distinguishes this text?

We hope to distinguish our text from previously published sampling theory texts in
several different ways. First, we have tried to make the material presented in the text
accessible to the reader who may not be “homozygous for the math gene”. Toward that
end, though we do provide derivations of many important sampling theory results, we
also provide small sample space illustrations of the behavior of most of the sampling
strategies (selection method and estimator applied to a sampling frame) that we consider.
This allows readers to see numerically, rather than imagine in thought, what the sample
space actually is. For individuals “heterozygous (or recessive) for the math gene”, the
small sample space examples often make abstract concepts like sampling variance come
alive and have tangible and very real meaning. Sample space examples have been used
relatively rarely in existing texts, but we acknowledge their previous effective use in the
very small but very useful and repeatedly reissued (1962, 1964, 1968, 1976, 1984) text
by Stuart (1984), The Ideas of Sampling. Sample space examples also allow us to avoid
presentation of numerous fictitious examples for observed data from a single sample; the
sample spaces provide an abundance of implicit calculations that can be worked through
and confirmed by students and readers if they wish.

Second, we have presented some material that has not frequently or routinely been
covered in existing texts. Appendix A provides a review of the mathematical foundations
of design-based sampling theory including counting techniques, basic principles of proba-
bility theory, properties of discrete random variables, key discrete probability distributions
and their clear links to design-based or probability sampling, as well as an overview of the
use of Lagrange multipliers and the delta method. Chapter 11 covers adaptive sampling,
a topic covered in Thompson (1992, 2002, 2012) and Thompson and Seber (1996) but
rarely in other sampling theory texts. More unusual is our coverage of spatially balanced
sampling methods [Generalized Random Tesselation Stratified sampling (GRTS) and
Balanced Acceptance Sampling (BAS)] in Chapter 12, and our coverage of designs and
estimators for sampling through time (including rotating panels and dual frame sampling)
in Chapter 13.

Third, we have tried to make extensive use of graphs and figures to convey important
sampling theory concepts and especially to help readers understand how the performances
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(sampling variance or net relative efficiency) of competing sampling strategies may be
compared to one another. We also use graphs to portray the shapes of the sampling
distributions of design-based estimators, which are often not approximately normal until
n > 20 or so.

Fourth, we have tried to develop and use a notation that is more consistent than in many
previously published sampling theory texts. We use Greek letters to represent population
parameters (7 = total, 4 = mean, n = proportion, and ¢2 = finite population variance, with
a divisor of N — 1); we always use a caret or hat to indicate an estimator or estimate (as
in j, rather than y); we use lowercase italic y and x to denote the target and auxiliary
population variables, respectively, and uppercase letters to denote random variables; we
use uppercase italic § to indicate the population units selected as the random outcome of a
sample selection process (sampling experiment, see Section A.6.1), and 0= sfix)asa
generic representation of a design-based estimator; we use lowercase italic s to identify the
set of units in a particular realized sample of size #n and }_;., y; to indicate the sum of the y
values in this sample, thereby avoiding the re-labeling of population units implicit in the
more commonly used Y "I ; ¥;; and we use combinations of uppercase and lowercase letters
to define properties relating two finite population variables and properties of estimators
(e.g., Cov(x,y) for covariance, R for the ratio of the means of y and x, V(@) for sampling
variance of an estimator @)).

Fifth, in the text we provide occasional brief reference to simple R functions or packages
that should prove useful for working through problems or for implementing computer-
intensive sample selection methods. We do not, however, as a rule present code for what
we believe to be relatively simple calculations for which students and other readers should
learn to write their own code. Instead, we provide web-based access (www.oup.co.uk/
companion/hankin) to either existing R packages or code that we have written ourselves
for tasks that we believe to be beyond the level of programming proficiency and/or
statistical sophistication that one can reasonably expect from students or professionals
using this text as a first course in sampling theory. Examples of such R programs include
several methods of selection of unequal probability without replacement samples and for
calculation of associated first and second order inclusion probabilities, and programs for
implementing the spatially balanced sampling methods described in Chapter 12.

The natural resources/environmental/ecological orientation of the text will be most
evident from the problem exercises associated with those chapters for which we believe
reasonable “classroom” problems can be developed. Many of these problems have roots
in real-world natural resource settings in which the authors have worked. We hope that
these problem exercises will help students and readers learn how to answer what is often
the most difficult question: “How can we apply these ideas in practice?” We also have
frequent references to natural resources/environmental settings/applications within the
text of chapters and in the Chapter comments section at the conclusion of each chapter,
and we begin each chapter with a relevant photograph, usually illustrating a natural world
setting where sampling theory can address a topic of interest.

1.4 Recommendations for instructors

If the text were used to teach a one semester sampling theory class to a group consist-
ing of senior undergraduates and beginning graduate students, we recommend using
Appendix A, the review of mathematical foundations, as a reference and that it only be
worked through in detail if students in the course have unusually strong backgrounds
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and interests in mathematics and probability theory. Instead, we recommend that when
concepts or techniques covered in Appendix A are used or noted in other chapters, then
the instructor should refer students to Appendix A and perhaps cover a few of the relevant
concepts or techniques at that time. It is important that students do not think “this is a
math class”. Material through Chapter 11 can be easily covered in a one semester course.
Content of Chapters 12 and 13 should at least be mentioned and practical importance
discussed, but could be covered in some detail if material in other chapters was covered
very rapidly.

We highly recommend addition of a weekly (two hour) laboratory/practicum session
in addition to lecture/discussion presentation of the material presented in this text.
These lab sessions can be used to illustrate computer implementation and evaluation of
sampling strategies (using R), especially for unequal probability and spatially balanced
selection methods, as well as to illustrate use of R to solve assigned problems (thereby
assisting students in developing programming and graphics skills). Lab sessions can
also be used as effective class exercises to contrast the performance of simple random
sampling and judgment sampling (see agate population exercise described in Section 2.6),
and for student presentations of their experiences in development and execution of
sampling strategies for estimating simple parameters such as the total number of preserved
specimens in a university’s ichthyology (fish) collection; the average cost (and average
quality rating) of a slice of pizza sold within the local county; the proportion of plants
in an herbarium that are in bloom at the time of a survey; the fraction of trees of a
given species in a well-defined plot that have diameter at breast height exceeding 1 m;
the number of books in a library; the numbers of pieces of trash (carefully defined) per
unit area or length in several well-defined areas (neighborhoods) of a small town or city;
and numerous other ideas that students will dream up if they are given enough freedom.
There is no exercise that is a more effective practical learning experience than identifying a
finite population (or study area) of interest, picking a well-identified target of estimation,
thinking through how measurements can be made, what sampling frames might make
most sense, what selection methods might prove most effective, what estimators might
be used, and then executing a small-scale survey, ideally using two alternative sampling
strategies, and reporting back to classmates on their experiences.

Finally, after working through this text or taking a class using this text, we hope that
all readers or students will develop a deep appreciation for the following ]oke about
statisticians in a wildlife setting.

Three statisticians set out on a bow hunt for deer and hope to make a successful kill of a buck. They are
fortunate to locate a fine buck at a decent distance. Statistician 1 lets loose his arrow, but it misses the
buck by exactly 6.1 feet to the east of the buck’s heart. Statistician 2 lets loose his arrow, but it misses
the buck by exactly 6.1 feet to the west of the buck’s heart. In excitement, Statistician 3 exclaims “We got
him!"1

1.5 Sampling theory: A brief history

Sampling theory is a narrowly specialized but important area of the larger body of
statistical theory. In Kendall and Stuart’s three volume Advanced theory of statistics (Kendall
and Stuart 1977, 1979, Kendall et al. 1983), the subject of sampling theory occupied just

1 We thank Mathew Krachey, former sampling theory student and now Ph.D. statistician, for passing this
joke on to us many years back.

\
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84 of 2,000 pages, about 4%. But work in this small area of statistical theory has remained
very active. Volume 6 (Sampling) of the Handbook of Statistics (Krishnaiah and Rao 1988)
was 594 pages long, and Volumes 29A and 29B of the Handbook of Statistics (Pfeffermann
and Rao 2009a,b) contain 1,340 pages combined devoted to sampling theory.

Numerous published articles have reviewed the roots of sampling theory. Bellhouse
(1988), Hansen (1987), and Hansen et al. (1985), in particular, provide excellent reviews
of the history and development of the design-based or probability sampling theory
that is stressed in this text, along with references for many other previously published
histories of sampling theory. Bellhouse (1988) argues persuasively that the development
of sampling theory can be seen to have had several paradigm shifts (Kuhn 1970) which
were attributable to novel new sampling ideas but also to aggressive promotion of these
ideas by their proponents. In the brief description of the historical development of design-
based sampling theory that follows, we rely heavily on Bellhouse (1988).

The historical origins of sampling theory can be traced to desires of government
agencies for knowledge of population size, production of agricultural crops, average
income, and other descriptive population parameters that are important for description
and management of a country’s economy and social structure. Kiaer (1897, as cited in
Bellhouse 1988), Director of the Norwegian Central Bureau of Statistics, was a vigorous
early advocate of representative sampling which was an alternative to the prohibitively
expensive or logistically unfeasible complete enumerations that were judged necessary
prior to the acceptance of sampling as an alternative way to obtain (acceptably accurate)
estimates of population parameters. At the time, a representative sample was thought
to be a sample of units that was an approximate miniature of the population, a “correct
representation of the whole”. (Kruskal and Mosteller (1979a,b,c, 1980) provide historical
reviews of the rich, varied, often incorrect and inconsistent meanings that the term
representative sampling has had in scientific, non-scientific, and statistical settings.) By
about 1925, the basic idea of representative sampling (instead of complete enumeration)
had been widely accepted, but there had not yet been any agreement that randomized
rather than purposive selection was required to achieve a representative sample. From
about 1925 to 1935, the British statistician Arthur Bowley became a staunch advocate
for equal probability randomized selection of samples. Bellhouse (1988) provides direct
quotations from Bowley that suggest that he understood the advantages of systematic
sampling as compared to simple random sampling (SRS), but Bellhouse also points out that
Bowley’s (1926) monograph presented theoretical justifications and suggested methods
for calculating uncertainty of estimation for both randomized and purposive selection
of units.

All accounts of the history of design-based sampling theory give Neyman'’s (1934)
paper preeminent importance in the paradigm shift that lead to widespread adoption
of the randomized selection, design-based approach to generating sample estimates from
finite populations. First, Neyman argued (and graphically illustrated) that a then recent
purposive large-scale Italian survey had invoked tenuous assumptions of linearity in
relations among some variables, had been purposively balanced on some variables, but
had generated sample estimates that were inconsistent with available census counts for
other variables. Second, Neyman laid out the theory for optimal allocation (ignoring costs)
in stratified sampling (Neyman allocation, Chapter 5). In optimal allocation, units from
different strata typically have different probabilities of inclusion in the overall sample, the
first time this idea had been shown to be optimal. Third, Neyman characterized the notion
of a representative sample as one that would allow estimation of accuracy “irrespectively
of the unknown properties of the population studied”, based on the behavior of an



1.5 SAMPLING THEORY: A BRIEF HISTORY

estimator over all possible randomized sample selections. Fourth, he defined the concept
of confidence intervals, based on the notion of repeated sampling within the design-based
framework. A few years later, Neyman (1938) developed the theory of double sampling,
including the first joint use of cost and variance functions to optimize performance of a
given sampling strategy (frame + design + estimator).

The paradigm shift to widespread adoption of randomized design-based sampling
strategies for estimation of descriptive population parameters generated an explosive
proliferation of important articles and texts. Particularly important were the papers
concerning estimation based on unequal probability with and without replacement
selection by Hansen and Hurwitz (1943) and Horvitz and Thompson (1952), respectively.
Among the many fine sampling theory texts that were produced prior to 1970, we
highlight those written by Deming (1950), Cochran (1953), Hansen et al. (1953a,b), Yates
(1960), Murthy (1967), and Raj (1968). We stop this listing of texts at 1970 because that
year may date another paradigm shift among a minority of statisticians concerned with
estimation in finite populations.

Bellhouse (1988) credits Godambe (1955) with generating a paradigm shift that stimu-
lated interest in the theoretical foundations of sampling theory (e.g., Cassel et al. 1977).
Godambe’s (1955) proof of the non-existence of a unique minimum variance design-
based unbiased estimator of the finite population mean stimulated exploration of the
use of models in finite population inference. Royall (1970) advanced the model-based
prediction approach for estimation of finite population parameters. He showed that, if
there were a linear model relation between auxiliary and target variables, passing through
the origin with variation increasing with x, then the ratio estimator was the best model-
based predictor of the finite population total. According to this perspective, randomized
selection of units was irrelevant, or even foolish. Indeed, minimum variance of this
estimator, given the assumed model, was achieved if the sample were purposively selected
to include those n units with largest auxiliary variable values. Given this sample of units,
predictions would need to be made only for units with a smaller value of x, for which errors
would be smaller because, under the model, variation is less at smaller values of x. (Brewer
(1963) had earlier presented similar findings for model-based ratio estimation in finite
populations, including the finding that accuracy would be best if the sample contained
the units with the largest values of x, but his work was not cited by Royall (1970) and may
not have been aggressively promoted.)

Royall’s (1970) paper and his subsequent vigorous advocacy for model-based prediction
in finite populations generated heated exchanges between practicing proponents of
design-based sampling theory and model-based prediction advocates (see, e.g., the paper,
comment, rejoinder by Hansen et al. (1983a), Royall (1983), and Hansen et al. (1983b),
respectively) for at least the next two to three decades. At least one prominent sampling
theorist was first persuaded by the new model-based prediction paradigm but then, on
further reflection, proclaimed himself a staunch design-based advocate [contrast Smith
(1994) with Smith (1976)], much to the chagrin of Royall (Royall 1994). Publication of
Sdrndal et als (1992) text on model-assisted sampling represents one very important
response to the model-based prediction paradigm. This text (and many earlier published
papers by Sarndal and colleagues) illustrates how models might be used to guide devel-
opment and adoption of competing sampling strategies, but then estimation remains
firmly within the design-based framework. Sarndal (2010) provides a recent review of
the role of models in sampling theory. Among other things, he notes that the notion
of purposive selection of sample units that are balanced on a set of auxiliary variables, to
achieve model-robust estimation within the model-based prediction framework (Valliant
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et al. 2000), has a new parallel in the design-based setting—the cube method (Deville and
Tillé 2004, Tillé 2011)—where randomization is used to achieve balancing on auxiliary
variables but inference remains within the design-based framework. Thus, one might
argue that sampling theory has come full circle from the purposively balanced samples
that had been recommended prior to Neyman’s (1934) landmark paper, but thereafter
rejected, to a contemporary recognition in both model-based prediction and design-based
estimation that balancing is desirable in both designed-based and model-based settings.
Current methods for selecting spatially balanced samples (Chapter 12) are consistent with
this notion of balancing used within a design-based framework.

Finally, it is important to distinguish between sample surveys that have a strictly
descriptive objective—estimation of descriptive population parameters—as compared to
those that have an analytic or causal objective (Hansen 1987). In analytic or causal
surveys, primary interest lies not in estimation of the descriptive population parameters
themselves, but instead on analysis of the possible relationships among survey variables.
There is no alternative to conjecture of hypothetical model relations in the context
of analytic surveys, but statistical analysis of these relations should acknowledge the
probability structure of the sampling design under which the survey data were collected
(Korn and Graubard 1999, Lohr 2010 Chapter 10).
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